Numerical approximation of the boundary control for the wave equation with a spectral collocation method

04/14/2023
by   Somia Boumimez, et al.
0

We propose a spectral collocation method to approximate the exact boundary control of the wave equation in a square domain. The idea is to introduce a suitable approximate control problem that we solve in the finite-dimensional space of polynomials of degree N in space. We prove that we can choose a sequence of discrete controls depending on the parameter N associated with the approximate control problem in such a way that they converge, as N goes to infinity, to a control of the continuous wave equation. Unlike other numerical approximations tried in the literature, this one does not require regularization techniques and can be easily adapted to other equations and systems where the controllability of the continuous model is known. The method is illustrated with several examples in 1-d and 2-d in a square domain. We also give numerical evidence of the highly accurate approximation inherent to spectral methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset