Numerical method for feasible and approximately optimal solutions of multi-marginal optimal transport beyond discrete measures

03/03/2022
by   Ariel Neufeld, et al.
0

We propose a numerical algorithm for the computation of multi-marginal optimal transport (MMOT) problems involving general measures that are not necessarily discrete. By developing a relaxation scheme in which marginal constraints are replaced by finitely many linear constraints and by proving a specifically tailored duality result for this setting, we approximate the MMOT problem by a linear semi-infinite optimization problem. Moreover, we are able to recover a feasible and approximately optimal solution of the MMOT problem, and its sub-optimality can be controlled to be arbitrarily close to 0 under mild conditions. The developed relaxation scheme leads to a numerical algorithm which can compute a feasible approximate optimizer of the MMOT problem whose theoretical sub-optimality can be chosen to be arbitrarily small. Besides the approximate optimizer, the algorithm is also able to compute both an upper bound and a lower bound on the optimal value of the MMOT problem. The difference between the computed bounds provides an explicit upper bound on the sub-optimality of the computed approximate optimizer. Through a numerical example, we demonstrate that the proposed algorithm is capable of computing a high-quality solution of an MMOT problem involving as many as 50 marginals along with an explicit estimate of its sub-optimality that is much less conservative compared to the theoretical estimate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro