Numerically computing the index of mean curvature flow self-shrinkers

07/12/2020
by   Yakov Berchenko-Kogan, et al.
0

Surfaces that evolve by mean curvature flow develop singularities. These singularities can be modeled by self-shrinkers, surfaces that shrink by dilations under the flow. Singularities modeled on classical self-shrinkers, namely spheres and cylinders, are stable under perturbations of the flow. In contrast, singularities modeled on other self-shrinkers, such as the Angenent torus, are unstable: perturbing the flow will generally change the kind of singularity. One can measure the degree of instability by computing the Morse index of the self-shrinker, viewed as a critical point of an appropriate functional. In this paper, we present a numerical method for computing the index of rotationally symmetric self-shrinkers. We apply this method to the Angenent torus, the first known nontrivial example of a self-shrinker. We find that, excluding dilations and translations, the index of the Angenent torus is 5, which is consistent with the lower bound of 3 from the work of Liu and the upper bound of 29 from our earlier work. Also, we unexpectedly discover two additional variations of the Angenent torus with eigenvalue -1.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset