Objective Bayesian Inference for Repairable System Subject to Competing Risks

04/17/2018
by   Marco Pollo, et al.
0

Competing risks models for a repairable system subject to several failure modes are discussed. Under minimal repair, it is assumed that each failure mode has a power law intensity. An orthogonal reparametrization is used to obtain an objective Bayesian prior which is invariant under relabelling of the failure modes. The resulting posterior is a product of gamma distributions and has appealing properties: one-to-one invariance, consistent marginalization and consistent sampling properties. Moreover, the resulting Bayes estimators have closed-form expressions and are naturally unbiased for all the parameters of the model. The methodology is applied in the analysis of (i) a previously unpublished dataset about recurrent failure history of a sugarcane harvester and (ii) records of automotive warranty claims introduced in [1]. A simulation study was carried out to study the efficiency of the methods proposed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset