On Competitive Analysis for Polling Systems
Polling systems have been widely studied, however most of these studies focus on polling systems with renewal processes for arrivals and random variables for service times. There is a need driven by practical applications to study polling systems with arbitrary arrivals (not restricted to time-varying or in batches) and revealed service time upon a job's arrival. To address that need, our work considers a polling system with generic setting and for the first time provides the worst-case analysis for online scheduling policies in this system. We provide conditions for the existence of constant competitive ratios, and competitive lower bounds for general scheduling policies in polling systems. Our work also bridges the queueing and scheduling communities by proving the competitive ratios for several well-studied policies in the queueing literature, such as cyclic policies with exhaustive, gated or l-limited service disciplines for polling systems.
READ FULL TEXT