On randomized trace estimates for indefinite matrices with an application to determinants

by   Alice Cortinovis, et al.

Randomized trace estimation is a popular and well studied technique that approximates the trace of a large-scale matrix B by computing the average of x^T Bx for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number of applications give rise to indefinite B. Most notably, this is the case for log-determinant estimation, a task that features prominently in statistical learning, for instance in maximum likelihood estimation for Gaussian process regression. The analysis of randomized trace estimates, including tail bounds, has mostly focused on the SPD case. A notable exception is recent work by Ubaru, Chen, and Saad on trace estimates for a matrix function f(A) with Rademacher random vectors. In this work, we derive new tail bounds for randomized trace estimates applied to indefinite B with Rademacher or Gaussian random vectors. These bounds significantly improve existing results for indefinite B, reducing the the number of required samples by a factor n or even more, where n is the size of A. Even for an SPD matrix, our work improves an existing result by Roosta-Khorasani and Ascher for Rademacher vectors. This work also analyzes the combination of randomized trace estimates with the Lanczos method for approximating the trace of f(A). Particular attention is paid to the matrix logarithm, which is needed for log-determinant estimation. We improve and extend an existing result, to not only cover Rademacher but also Gaussian random vectors.


page 1

page 2

page 3

page 4


Norm and trace estimation with random rank-one vectors

A few matrix-vector multiplications with random vectors are often suffic...

Interpolating the Trace of the Inverse of Matrix 𝐀 + t 𝐁

We develop heuristic interpolation methods for the function t ↦trace( (𝐀...

Entropic Trace Estimates for Log Determinants

The scalable calculation of matrix determinants has been a bottleneck to...

Stochastic diagonal estimation: probabilistic bounds and an improved algorithm

We study the problem of estimating the diagonal of an implicitly given m...

Randomized block Krylov space methods for trace and log-determinant estimators

We present randomized algorithms based on block Krylov space method for ...

Estimation of matrix trace using machine learning

We present a new trace estimator of the matrix whose explicit form is no...

Enabling wave-based inversion on GPUs with randomized trace estimation

By building on recent advances in the use of randomized trace estimation...

Please sign up or login with your details

Forgot password? Click here to reset