On solving decision and risk management problems subject to uncertainty
Uncertainty is a pervasive challenge in decision and risk management and it is usually studied by quantification and modeling. Interestingly, engineers and other decision makers usually manage uncertainty with strategies such as incorporating robustness, or by employing decision heuristics. The focus of this paper is then to develop a systematic understanding of such strategies, determine their range of application, and develop a framework to better employ them. Based on a review of a dataset of 100 decision problems, this paper found that many decision problems have pivotal properties, i.e. properties that enable solution strategies, and finds 14 such properties. Therefore, an analyst can first find these properties in a given problem, and then utilize the strategies they enable. Multi-objective optimization methods could be used to make investment decisions quantitatively. The analytical complexity of decision problems can also be scored by evaluating how many of the pivotal properties are available. Overall, we find that in the light of pivotal properties, complex problems under uncertainty frequently appear surprisingly tractable.
READ FULL TEXT