On the Binary and Boolean Rank of Regular Matrices

03/24/2022
by   Ishay Haviv, et al.
0

A 0,1 matrix is said to be regular if all of its rows and columns have the same number of ones. We prove that for infinitely many integers k, there exists a square regular 0,1 matrix with binary rank k, such that the Boolean rank of its complement is k^Ω(log k). Equivalently, the ones in the matrix can be partitioned into k combinatorial rectangles, whereas the number of rectangles needed for any cover of its zeros is k^Ω(log k). This settles, in a strong form, a question of Pullman (Linear Algebra Appl., 1988) and a conjecture of Hefner, Henson, Lundgren, and Maybee (Congr. Numer., 1990). The result can be viewed as a regular analogue of a recent result of Balodis, Ben-David, Göös, Jain, and Kothari (FOCS, 2021), motivated by the clique vs. independent set problem in communication complexity and by the (disproved) Alon-Saks-Seymour conjecture in graph theory. As an application of the produced regular matrices, we obtain regular counterexamples to the Alon-Saks-Seymour conjecture and prove that for infinitely many integers k, there exists a regular graph with biclique partition number k and chromatic number k^Ω(log k).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset