On the Cell-based Complexity of Recognition of Bounded Configurations by Finite Dynamic Cellular Automata

10/11/2002
by   Maxim Makatchev, et al.
0

This paper studies complexity of recognition of classes of bounded configurations by a generalization of conventional cellular automata (CA) -- finite dynamic cellular automata (FDCA). Inspired by the CA-based models of biological and computer vision, this study attempts to derive the properties of a complexity measure and of the classes of input configurations that make it beneficial to realize the recognition via a two-layered automaton as compared to a one-layered automaton. A formalized model of an image pattern recognition task is utilized to demonstrate that the derived conditions can be satisfied for a non-empty set of practical problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro