On the Le Cam distance between multivariate hypergeometric and multivariate normal experiments

07/24/2021
by   Frédéric Ouimet, et al.
0

In this short note, we develop a local approximation for the log-ratio of the multivariate hypergeometric probability mass function over the corresponding multinomial probability mass function. In conjunction with the bounds from Carter (2002) and Ouimet (2021) on the total variation between the law of a multinomial vector jittered by a uniform on (-1/2,1/2)^d and the law of the corresponding multivariate normal distribution, the local expansion for the log-ratio is then used to obtain a total variation bound between the law of a multivariate hypergeometric random vector jittered by a uniform on (-1/2,1/2)^d and the law of the corresponding multivariate normal distribution. As a corollary, we find an upper bound on the Le Cam distance between multivariate hypergeometric and multivariate normal experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset