On the Performance of Multihop THz Wireless System Over Mixed Channel Fading with Shadowing and Antenna Misalignment
The existing relay-assisted terahertz (THz) wireless system is limited to dual-hop transmission with pointing errors and short-term fading without considering the shadowing effect. This paper analyzes the performance of a multihop-assisted backhaul communication mixed with an access link under the shadowed fading with antenna misalignment errors. We derive statistical results of the signal-to-noise ratio (SNR) of the multihop link by considering independent but not identically distributed (i.ni.d) α-μ fading channel with pointing errors employing channel-assisted (CA) and fixed-gain (FG) amplify-and-forward (AF) relaying for each hop. We analyze the outage probability, average BER, and ergodic capacity performance of the mixed system considering the generalized-K shadowed fading model with AF and decode-and-forward (DF) protocols employed for the access link. We derive exact expressions of the performance metrics for the CA-multihop system with the DF relaying for the last hop and upper bound of the performance for the FG-multihop system using FG and DF relaying at the last relay. We also develop asymptotic analysis in the high SNR to derive the diversity order of the system and use computer simulations to provide design and deployment aspects of multiple relays in the backhaul link to extend the communication range for THz wireless transmissions.
READ FULL TEXT