On the sample complexity of entropic optimal transport
We study the sample complexity of entropic optimal transport in high dimensions using computationally efficient plug-in estimators. We significantly advance the state of the art by establishing dimension-free, parametric rates for estimating various quantities of interest, including the entropic regression function which is a natural analog to the optimal transport map. As an application, we propose a practical model for transfer learning based on entropic optimal transport and establish parametric rates of convergence for nonparametric regression and classification.
READ FULL TEXT