On the Trustworthiness Landscape of State-of-the-art Generative Models: A Comprehensive Survey
Diffusion models and large language models have emerged as leading-edge generative models and have sparked a revolutionary impact on various aspects of human life. However, the practical implementation of these models has also exposed inherent risks, highlighting their dual nature and raising concerns regarding their trustworthiness. Despite the abundance of literature on this subject, a comprehensive survey specifically delving into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, This paper investigates both the long-standing and emerging threats associated with these models across four fundamental dimensions: privacy, security, fairness, and responsibility. In this way, we construct an extensive map outlining the trustworthiness of these models, while also providing practical recommendations and identifying future directions. These efforts are crucial for promoting the trustworthy deployment of these models, ultimately benefiting society as a whole.
READ FULL TEXT