Optimal approximation of continuous functions by very deep ReLU networks

02/10/2018
by   Dmitry Yarotsky, et al.
0

We prove that deep ReLU neural networks with conventional fully-connected architectures with W weights can approximate continuous ν-variate functions f with uniform error not exceeding a_νω_f(c_ν W^-2/ν), where ω_f is the modulus of continuity of f and a_ν, c_ν are some ν-dependent constants. This bound is tight. Our construction is inherently deep and nonlinear: the obtained approximation rate cannot be achieved by networks with fewer than Ω(W/ W) layers or by networks with weights continuously depending on f.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro