# Order Selection Prophet Inequality: From Threshold Optimization to Arrival Time Design

In the classical prophet inequality, a gambler faces a sequence of items, whose values are drawn independently from known distributions. Upon the arrival of each item, its value is realized and the gambler either accepts it and the game ends, or irrevocably rejects it and continues to the next item. The goal is to maximize the value of the selected item and compete against the expected maximum value of all items. A tight competitive ratio of 1/2 is established in the classical setting and various relaxations have been proposed to surpass the barrier, including the i.i.d. model, the order selection model, and the random order model. In this paper, we advance the study of the order selection prophet inequality, in which the gambler is given the extra power for selecting the arrival order of the items. Our main result is a 0.725-competitive algorithm, that substantially improves the state-of-the-art 0.669 ratio by Correa, Saona and Ziliotto (Math. Program. 2021), achieved in the harder random order model. Recently, Agrawal, Sethuraman and Zhang (EC 2021) proved that the task of selecting the optimal order is NP-hard. Despite this fact, we introduce a novel algorithm design framework that translates the discrete order selection problem into a continuous arrival time design problem. From this perspective, we can focus on the arrival time design without worrying about the threshold optimization afterwards. As a side result, we achieve the optimal 0.745 competitive ratio by applying our algorithm to the i.i.d. model.

• 49 publications
• 25 publications
11/08/2022

### Prophet Inequality: Order selection beats random order

In the prophet inequality problem, a gambler faces a sequence of items a...
10/13/2022

### Online Algorithms for the Santa Claus Problem

The Santa Claus problem is a fundamental problem in fair division: the g...
02/18/2022

### On the Significance of Knowing the Arrival Order in Prophet Inequality

In a prophet inequality problem, n boxes arrive online, each containing ...
09/28/2022

### Repeated Prophet Inequality with Near-optimal Bounds

In modern sample-driven Prophet Inequality, an adversary chooses a seque...
12/01/2020

### New Results for the k-Secretary Problem

Suppose that n items arrive online in random order and the goal is to se...
12/01/2020

### Improved Online Algorithms for Knapsack and GAP in the Random Order Model

The knapsack problem is one of the classical problems in combinatorial o...
04/08/2023

### Prophet Inequalities: Separating Random Order from Order Selection

Prophet inequalities are a central object of study in optimal stopping t...