Origin of inverse volume scaling in periodic coupled cluster calculations towards thermodynamic limit

04/06/2023
by   Xin Xing, et al.
0

Coupled cluster theory is considered to be the “gold standard” ansatz of molecular quantum chemistry. The finite-size error of the correlation energy in periodic coupled cluster calculations for three-dimensional insulating systems has been observed to satisfy the inverse volume scaling, even in the absence of any correction schemes. This is surprising, as simpler theories that utilize only a subset of the coupled cluster diagrams exhibit much slower decay of the finite-size error, which scales inversely with the length of the system. In this study, we present a rigorous numerical analysis that explains the underlying mechanisms behind this phenomenon in the context of coupled cluster doubles (CCD) calculations, and reconciles a few seemingly paradoxical statements with respect to the finite-size scaling. Our findings also have implications on how to effectively address finite-size errors in practical quantum chemistry calculations for periodic systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro