Outlier Detection Using Distributionally Robust Optimization under the Wasserstein Metric

06/07/2017
by   Ruidi Chen, et al.
0

We present a Distributionally Robust Optimization (DRO) approach to outlier detection in a linear regression setting, where the closeness of probability distributions is measured using the Wasserstein metric. Training samples contaminated with outliers skew the regression plane computed by least squares and thus impede outlier detection. Classical approaches, such as robust regression, remedy this problem by downweighting the contribution of atypical data points. In contrast, our Wasserstein DRO approach hedges against a family of distributions that are close to the empirical distribution. We show that the resulting formulation encompasses a class of models, which include the regularized Least Absolute Deviation (LAD) as a special case. We provide new insights into the regularization term and give guidance on the selection of the regularization coefficient from the standpoint of a confidence region. We establish two types of performance guarantees for the solution to our formulation under mild conditions. One is related to its out-of-sample behavior, and the other concerns the discrepancy between the estimated and true regression planes. Extensive numerical results demonstrate the superiority of our approach to both robust regression and the regularized LAD in terms of estimation accuracy and outlier detection rates.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset