P_N-Method for Multiple Scattering in Participating Media

07/01/2018
by   David Koerner, et al.
0

Rendering highly scattering participating media using brute force path tracing is a challenge. The diffusion approximation reduces the problem to solving a simple linear partial differential equation. Flux-limited diffusion introduces non-linearities to improve the accuracy of the solution, especially in low optical depth media, but introduces several ad-hoc assumptions. Both methods are based on a spherical harmonics expansion of the radiance field that is truncated after the first order. In this paper, we investigate the open question of whether going to higher spherical harmonic orders provides a viable improvement to these two approaches. Increasing the order introduces a set of complex coupled partial differential equations (the P_N-equations), whose growing number make them difficult to work with at higher orders. We thus use a computer algebra framework for representing and manipulating the underlying mathematical equations, and use it to derive the real-valued P_N-equations for arbitrary orders. We further present a staggered-grid P_N-solver and generate its stencil code directly from the expression tree of the P_N-equations. Finally, we discuss how our method compares to prior work for various standard problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset