PAC-learning is Undecidable
The problem of attempting to learn the mapping between data and labels is the crux of any machine learning task. It is, therefore, of interest to the machine learning community on practical as well as theoretical counts to consider the existence of a test or criterion for deciding the feasibility of attempting to learn. We investigate the existence of such a criterion in the setting of PAC-learning, basing the feasibility solely on whether the mapping to be learnt lends itself to approximation by a given class of hypothesis functions. We show that no such criterion exists, exposing a fundamental limitation in the decidability of learning. In other words, we prove that testing for PAC-learnability is undecidable in the Turing sense. We also briefly discuss some of the probable implications of this result to the current practice of machine learning.
READ FULL TEXT