PaMM: Pose-aware Multi-shot Matching for Improving Person Re-identification

05/17/2017
by   Yeong-Jun Cho, et al.
0

Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although there has been much progress in person re-identification over the last decade, it remains a challenging task because appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses in a so-called Pose-aware Multi-shot Matching (PaMM), which robustly estimates people's poses and efficiently conducts multi-shot matching based on pose information. Experimental results using public person re-identification datasets show that the proposed methods outperform state-of-the-art methods and are promising for person re-identification from diverse viewpoints and pose variances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro