Pareto Pairwise Ranking for Fairness Enhancement of Recommender Systems

12/06/2022
by   Hao Wang, et al.
0

Learning to rank is an effective recommendation approach since its introduction around 2010. Famous algorithms such as Bayesian Personalized Ranking and Collaborative Less is More Filtering have left deep impact in both academia and industry. However, most learning to rank approaches focus on improving technical accuracy metrics such as AUC, MRR and NDCG. Other evaluation metrics of recommender systems like fairness have been largely overlooked until in recent years. In this paper, we propose a new learning to rank algorithm named Pareto Pairwise Ranking. We are inspired by the idea of Bayesian Personalized Ranking and power law distribution. We show that our algorithm is competitive with other algorithms when evaluated on technical accuracy metrics. What is more important, in our experiment section we demonstrate that Pareto Pairwise Ranking is the most fair algorithm in comparison with 9 other contemporary algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro