PARSE challenge 2022: Pulmonary Arteries Segmentation using Swin U-Net Transformer(Swin UNETR) and U-Net
In this work, we present our proposed method to segment the pulmonary arteries from the CT scans using Swin UNETR and U-Net-based deep neural network architecture. Six models, three models based on Swin UNETR, and three models based on 3D U-net with residual units were ensemble using a weighted average to make the final segmentation masks. Our team achieved a multi-level dice score of 84.36 percent through this method. The code of our work is available on the following link: https://github.com/akansh12/parse2022. This work is part of the MICCAI PARSE 2022 challenge.
READ FULL TEXT