Particle Optimization in Stochastic Gradient MCMC

11/29/2017
by   Changyou Chen, et al.
0

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) has been increasingly popular in Bayesian learning due to its ability to deal with large data. A standard SG-MCMC algorithm simulates samples from a discretized-time Markov chain to approximate a target distribution. However, the samples are typically highly correlated due to the sequential generation process, an undesired property in SG-MCMC. In contrary, Stein variational gradient descent (SVGD) directly optimizes a set of particles, and it is able to approximate a target distribution with much fewer samples. In this paper, we propose a novel method to directly optimize particles (or samples) in SG-MCMC from scratch. Specifically, we propose efficient methods to solve the corresponding Fokker-Planck equation on the space of probability distributions, whose solution (i.e., a distribution) is approximated by particles. Through our framework, we are able to show connections of SG-MCMC to SVGD, as well as the seemly unrelated generative-adversarial-net framework. Under certain relaxations, particle optimization in SG-MCMC can be interpreted as an extension of standard SVGD with momentum.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset