PASNet: Polynomial Architecture Search Framework for Two-party Computation-based Secure Neural Network Deployment
Two-party computation (2PC) is promising to enable privacy-preserving deep learning (DL). However, the 2PC-based privacy-preserving DL implementation comes with high comparison protocol overhead from the non-linear operators. This work presents PASNet, a novel systematic framework that enables low latency, high energy efficiency accuracy, and security-guaranteed 2PC-DL by integrating the hardware latency of the cryptographic building block into the neural architecture search loss function. We develop a cryptographic hardware scheduler and the corresponding performance model for Field Programmable Gate Arrays (FPGA) as a case study. The experimental results demonstrate that our light-weighted model PASNet-A and heavily-weighted model PASNet-B achieve 63 ms and 228 ms latency on private inference on ImageNet, which are 147 and 40 times faster than the SOTA CryptGPU system, and achieve 70.54 more than 1000 times higher energy efficiency.
READ FULL TEXT