Patch-wise Mixed-Precision Quantization of Vision Transformer

05/11/2023
by   Junrui Xiao, et al.
0

As emerging hardware begins to support mixed bit-width arithmetic computation, mixed-precision quantization is widely used to reduce the complexity of neural networks. However, Vision Transformers (ViTs) require complex self-attention computation to guarantee the learning of powerful feature representations, which makes mixed-precision quantization of ViTs still challenging. In this paper, we propose a novel patch-wise mixed-precision quantization (PMQ) for efficient inference of ViTs. Specifically, we design a lightweight global metric, which is faster than existing methods, to measure the sensitivity of each component in ViTs to quantization errors. Moreover, we also introduce a pareto frontier approach to automatically allocate the optimal bit-precision according to the sensitivity. To further reduce the computational complexity of self-attention in inference stage, we propose a patch-wise module to reallocate bit-width of patches in each layer. Extensive experiments on the ImageNet dataset shows that our method greatly reduces the search cost and facilitates the application of mixed-precision quantization to ViTs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro