Pay attention to the activations: a modular attention mechanism for fine-grained image recognition

by   Pau Rodríguez López, et al.

Fine-grained image recognition is central to many multimedia tasks such as search, retrieval and captioning. Unfortunately, these tasks are still challenging since the appearance of samples of the same class can be more different than those from different classes. Attention has been typically implemented in neural networks by selecting the most informative regions of the image that improve classification. In contrast, in this paper, attention is not applied at the image level but to the convolutional feature activations. In essence, with our approach, the neural model learns to attend to lower-level feature activations without requiring part annotations and uses those activations to update and rectify the output likelihood distribution. The proposed mechanism is modular, architecture-independent and efficient in terms of both parameters and computation required. Experiments demonstrate that well-known networks such as Wide Residual Networks and ResNeXt, when augmented with our approach, systematically improve their classification accuracy and become more robust to changes in deformation and pose and to the presence of clutter. As a result, our proposal reaches state-of-the-art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford Dogs, and UEC-Food100 while obtaining competitive performance in ImageNet, CIFAR-100, CUB200 Birds, and Stanford Cars. In addition, we analyze the different components of our model, showing that the proposed attention modules succeed in finding the most discriminative regions of the image. Finally, as a proof of concept, we demonstrate that with only local predictions, an augmented neural network can successfully classify an image before reaching any fully connected layer, thus reducing the computational amount up to 10


page 2

page 7

page 10

page 11


Attend and Rectify: a Gated Attention Mechanism for Fine-Grained Recovery

We propose a novel attention mechanism to enhance Convolutional Neural N...

Reproduction Report on "Learn to Pay Attention"

We have successfully implemented the "Learn to Pay Attention" model of a...

Are You Sure YouWant To Do That? Classification with Verification

Classification systems typically act in isolation, meaning they are requ...

Are You Sure You Want To Do That? Classification with Verification

Classification systems typically act in isolation, meaning they are requ...

Mask-CNN: Localizing Parts and Selecting Descriptors for Fine-Grained Image Recognition

Fine-grained image recognition is a challenging computer vision problem,...

Parallel Convolutional Networks for Image Recognition via a Discriminator

In this paper, we introduce a simple but quite effective recognition fra...

Application of attention-based Siamese composite neural network in medical image recognition

Medical image recognition often faces the problem of insufficient data i...

Please sign up or login with your details

Forgot password? Click here to reset