PeakSegJoint: fast supervised peak detection via joint segmentation of multiple count data samples

06/03/2015
by   Toby Dylan Hocking, et al.
0

Joint peak detection is a central problem when comparing samples in genomic data analysis, but current algorithms for this task are unsupervised and limited to at most 2 sample types. We propose PeakSegJoint, a new constrained maximum likelihood segmentation model for any number of sample types. To select the number of peaks in the segmentation, we propose a supervised penalty learning model. To infer the parameters of these two models, we propose to use a discrete optimization heuristic for the segmentation, and convex optimization for the penalty learning. In comparisons with state-of-the-art peak detection algorithms, PeakSegJoint achieves similar accuracy, faster speeds, and a more interpretable model with overlapping peaks that occur in exactly the same positions across all samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset