Perfect Prediction in Minkowski Spacetime: Perfectly Transparent Equilibrium for Dynamic Games with Imperfect Information

05/10/2019
by   Ghislain Fourny, et al.
0

The assumptions of necessary rationality and necessary knowledge of strategies, also known as perfect prediction, lead to at most one surviving outcome, immune to the knowledge that the players have of them. Solutions concepts implementing this approach have been defined on both dynamic games with perfect information, the Perfect Prediction Equilibrium, and strategic games with no ties, the Perfectly Transparent Equilibrium. In this paper, we generalize the Perfectly Transparent Equilibrium to games in extensive form with imperfect information and no ties. Both the Perfect Prediction Equilibrium and the Perfectly Transparent Equilibrium for strategic games become special cases of this generalized equilibrium concept. The generalized equilibrium, if there are no ties in the payoffs, is at most unique, and is Pareto-optimal. We also contribute a special-relativistic interpretation of a subclass of the games in extensive form with imperfect information as a directed acyclic graph of decisions made by any number of agents, each decision being located at a specific position in Minkowski spacetime, and the information sets being derived from the causal structure. Strategic games correspond to a setup with only spacelike-separated decisions, and dynamic games to one with only timelike-separated decisions. The generalized Perfectly Transparent Equilibrium thus characterizes the outcome and payoffs reached in a general setup where decisions can be located in any generic positions in Minkowski spacetime, under necessary rationality and necessary knowledge of strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset