Permutation tests under a rotating sampling plan with clustered data
Consider a population consisting of clusters of sampling units, evolving temporally, spatially, or according to other dynamics. We wish to monitor the evolution of its means, medians, or other parameters. For administrative convenience and informativeness, clustered data are often collected via a rotating plan. Under rotating plans, the observations in the same clusters are correlated, and observations on the same unit collected on different occasions are also correlated. Ignoring this correlation structure may lead to invalid inference procedures. Accommodating cluster structure in parametric models is difficult or will have a high level of misspecification risk. In this paper, we explore exchangeability in clustered data collected via a rotating sampling plan to develop a permutation scheme for testing various hypotheses of interest. We also introduce a semiparametric density ratio model to facilitate the multiple population structure in rotating sampling plans. The combination ensures the validity of the inference methods while extracting maximum information from the sampling plan. A simulation study indicates that the proposed tests firmly control the type I error whether or not the data are clustered. The use of the density ratio model improves the power of the tests.
READ FULL TEXT