Personalized Federated Learning with Clustered Generalization

06/24/2021
by   Xueyang Tang, et al.
1

We study the recent emerging personalized federated learning (PFL) that aims at dealing with the challenging problem of Non-I.I.D. data in the federated learning (FL) setting. The key difference between PFL and conventional FL lies in the training target, of which the personalized models in PFL usually pursue a trade-off between personalization (i.e., usually from local models) and generalization (i.e., usually from the global model) on trained models. Conventional FL methods can hardly meet this target because of their both well-developed global and local models. The prevalent PFL approaches usually maintain a global model to guide the training process of local models and transfer a proper degree of generalization to them. However, the sole global model can only provide one direction of generalization and may even transfer negative effects to some local models when rich statistical diversity exists across multiple local datasets. Based on our observation, most real or synthetic data distributions usually tend to be clustered to some degree, of which we argue different directions of generalization can facilitate the PFL. In this paper, we propose a novel concept called clustered generalization to handle the challenge of statistical heterogeneity in FL. Specifically, we maintain multiple global (generalized) models in the server to associate with the corresponding amount of local model clusters in clients, and further formulate the PFL as a bi-level optimization problem that can be solved efficiently and robustly. We also conduct detailed theoretical analysis and provide the convergence guarantee for the smooth non-convex objectives. Experimental results on both synthetic and real datasets show that our approach surpasses the state-of-the-art by a significant margin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset