Perturbation Bounds for Orthogonally Decomposable Tensors and Their Applications in High Dimensional Data Analysis

07/17/2020
by   Arnab Auddy, et al.
0

We develop deterministic perturbation bounds for singular values and vectors of orthogonally decomposable tensors, in a spirit similar to classical results for matrices. Our bounds exhibit intriguing differences between matrices and higher-order tensors. Most notably, they indicate that for higher-order tensors perturbation affects each singular value/vector in isolation. In particular, its effect on a singular vector does not depend on the multiplicity of its corresponding singular value or its distance from other singular values. Our results can be readily applied and provide a unified treatment to many different problems involving higher-order orthogonally decomposable tensors. In particular, we illustrate the implications of our bounds through three connected yet seemingly different high dimensional data analysis tasks: tensor SVD, tensor regression and estimation of latent variable models, leading to new insights in each of these settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset