Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable Array for high performance image processing applications
Coarse-Grained Reconfigurable Arrays (CGRAs) enable ease of programmability and result in low development costs. They enable the ease of use specifically in reconfigurable computing applications. The smaller cost of compilation and reduced reconfiguration overhead enables them to become attractive platforms for accelerating high-performance computing applications such as image processing. The CGRAs are ASICs and therefore, expensive to produce. However, Field Programmable Gate Arrays (FPGAs) are relatively cheaper for low volume products but they are not so easily programmable. We combine best of both worlds by implementing a Virtual Coarse-Grained Reconfigurable Array (VCGRA) on FPGA. VCGRAs are a trade off between FPGA with large routing overheads and ASICs. In this perspective we present a novel heterogeneous Virtual Coarse-Grained Reconfigurable Array (VCGRA) called "Pixie" which is suitable for implementing high performance image processing applications. The proposed VCGRA contains generic processing elements and virtual channels that are described using the Hardware Description Language VHDL. Both elements have been optimized by using the parameterized configuration tool flow and result in a resource reduction of 24 channels respectively.
READ FULL TEXT