PLOG: Table-to-Logic Pretraining for Logical Table-to-Text Generation

05/25/2022
by   Ao Liu, et al.
0

Logical table-to-text generation is a task that involves generating logically faithful sentences from tables, which requires models to derive logical level facts from table records via logical inference. It raises a new challenge on the logical-level content planning of table-to-text models. However, directly learning the logical inference knowledge from table-text pairs is very difficult for neural models because of the ambiguity of natural language and the scarcity of parallel data. Hence even large-scale pre-trained language models present low logical fidelity on logical table-to-text. In this work, we propose a PLOG (Pretrained Logical Form Generator) framework to improve the generation fidelity. Specifically, PLOG is first pretrained on a table-to-logic-form generation (table-to-logic) task, then finetuned on downstream table-to-text tasks. The formal definition of logical forms enables us to collect large amount of accurate logical forms from tables without human annotation. In addition, PLOG can learn logical inference from table-logic pairs much more definitely than from table-text pairs. To evaluate our model, we further collect a controlled logical table-to-text dataset CONTLOG based on an existing dataset. On two benchmarks, LOGICNLG and CONTLOG, PLOG outperforms strong baselines by a large margin on the logical fidelity, demonstrating the effectiveness of table-to-logic pretraining.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset