Pointwise density estimation on metric spaces and applications in seismology

03/31/2023
by   Galatia Cleanthous, et al.
0

We are studying the problem of estimating density in a wide range of metric spaces, including the Euclidean space, the sphere, the ball, and various Riemannian manifolds. Our framework involves a metric space with a doubling measure and a self-adjoint operator, whose heat kernel exhibits Gaussian behaviour. We begin by reviewing the construction of kernel density estimators and the related background information. As a novel result, we present a pointwise kernel density estimation for probability density functions that belong to general Hölder spaces. The study is accompanied by an application in Seismology. Precisely, we analyze a globally-indexed dataset of earthquake occurrence and compare the out-of-sample performance of several approximated kernel density estimators indexed on the sphere.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset