Poisson hulls
We introduce a hull operator on Poisson point processes, the easiest example being the convex hull of the support of a point process in Euclidean space. Assuming that the intensity measure of the process is known on the set generated by the hull operator, we discuss estimation of the expected linear statistics built on the Poisson process. In special cases, our general scheme yields an estimator of the volume of a convex body or an estimator of an integral of a Hölder function. We show that the estimation error is given by the Kabanov–Skorohod integral with respect to the underlying Poisson process. A crucial ingredient of our approach is a spatial Markov property of the underlying Poisson process with respect to the hull. We derive the rate of normal convergence for the estimation error, and illustrate it on an application to estimators of integrals of a Hölder function. We also discuss estimation of higher order symmetric statistics.
READ FULL TEXT