Polynomial-Time Approximation of Zero-Free Partition Functions

01/30/2022
by   Penghui Yao, et al.
0

Zero-free based algorithm is a major technique for deterministic approximate counting. In Barvinok's original framework[Bar17], by calculating truncated Taylor expansions, a quasi-polynomial time algorithm was given for estimating zero-free partition functions. Patel and Regts[PR17] later gave a refinement of Barvinok's framework, which gave a polynomial-time algorithm for a class of zero-free graph polynomials that can be expressed as counting induced subgraphs in bounded-degree graphs. In this paper, we give a polynomial-time algorithm for estimating classical and quantum partition functions specified by local Hamiltonians with bounded maximum degree, assuming a zero-free property for the temperature. Consequently, when the inverse temperature is close enough to zero by a constant gap, we have polynomial-time approximation algorithm for all such partition functions. Our result is based on a new abstract framework that extends and generalizes the approach of Patel and Regts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro