Popular Matchings with One-Sided Bias

07/12/2022
by   Telikepalli Kavitha, et al.
0

Let G = (A ∪ B,E) be a bipartite graph where the set A consists of agents or main players and the set B consists of jobs or secondary players. Every vertex has a strict ranking of its neighbors. A matching M is popular if for any matching N, the number of vertices that prefer M to N is at least the number that prefer N to M. Popular matchings always exist in G since every stable matching is popular. A matching M is A-popular if for any matching N, the number of agents (i.e., vertices in A) that prefer M to N is at least the number of agents that prefer N to M. Unlike popular matchings, A-popular matchings need not exist in a given instance G and there is a simple linear time algorithm to decide if G admits an A-popular matching and compute one, if so. We consider the problem of deciding if G admits a matching that is both popular and A-popular and finding one, if so. We call such matchings fully popular. A fully popular matching is useful when A is the more important side – so along with overall popularity, we would like to maintain “popularity within the set A”. A fully popular matching is not necessarily a min-size/max-size popular matching and all known polynomial-time algorithms for popular matching problems compute either min-size or max-size popular matchings. Here we show a linear time algorithm for the fully popular matching problem, thus our result shows a new tractable subclass of popular matchings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro