Pose Neural Fabrics Search
Neural Architecture Search (NAS) technologies have been successfully performed for efficient neural architectures for tasks such as image classification and semantic segmentation. However, existing works implement NAS for target tasks independently of domain knowledge and focus only on searching for an architecture to replace the human-designed network in a common pipeline. Can we exploit human prior knowledge to guide NAS? To address it, we propose a framework, named Pose Neural Fabrics Search (PNFS), introducing prior knowledge of body structure into NAS for human pose estimation. We lead a new neural architecture search space, by parameterizing cell-based neural fabric, to learn micro as well as macro neural architecture using a differentiable search strategy. To take advantage of part-based structural knowledge of the human body and learning capability of NAS, global pose constraint relationships are modeled as multiple part representations, each of which is predicted by a personalized neural fabric. In part representation, we view human skeleton keypoints as entities by representing them as vectors at image locations, expecting it to capture keypoint's feature in a relaxed vector space. The experiments on MPII and MS-COCO datasets demonstrate that PNFS can achieve comparable performance to state-of-the-art methods, with fewer parameters and lower computational complexity.
READ FULL TEXT