Position and Rotation Invariant Sign Language Recognition from 3D Point Cloud Data with Recurrent Neural Networks
Sign language is a gesture based symbolic communication medium among speech and hearing impaired people. It also serves as a communication bridge between non-impaired population and impaired population. Unfortunately, in most situations a non-impaired person is not well conversant in such symbolic languages which restricts natural information flow between these two categories of population. Therefore, an automated translation mechanism can be greatly useful that can seamlessly translate sign language into natural language. In this paper, we attempt to perform recognition on 30 basic Indian sign gestures. Gestures are represented as temporal sequences of 3D depth maps each consisting of 3D coordinates of 20 body joints. A recurrent neural network (RNN) is employed as classifier. To improve performance of the classifier, we use geometric transformation for alignment correction of depth frames. In our experiments the model achieves 84.81
READ FULL TEXT