Power efficient analog features for audio recognition
The digital signal processing-based representations like the Mel-Frequency Cepstral Coefficient are well known to be a solid basis for various audio processing tasks. Alternatively, analog feature representations, relying on analog-electronics-feasible bandpass filtering, allow much lower system power consumption compared with the digital counterpart, while parity performance on traditional tasks like voice activity detection can be achieved. This work explores the possibility of using analog features on multiple speech processing tasks that vary in time dependencies: wake word detection, keyword spotting, and speaker identification. The results of this evaluation show that the analog features are still more power-efficient and competitive on simpler tasks than digital features but yield an increasing performance drop on more complex tasks when long-time correlations are present. We also introduce a novel theoretical framework based on information theory to understand this performance drop by quantifying information flow in feature calculation which helps identify the performance bottlenecks. The theoretical claims are experimentally validated, leading to a maximum of 6 surpassing the digital baseline features. The proposed analog-feature-based systems could pave the way to achieving best-in-class accuracy and power consumption simultaneously.
READ FULL TEXT