Practical Aspects of Zero-Shot Learning

03/29/2022
by   Elie Saad, et al.
0

One of important areas of machine learning research is zero-shot learning. It is applied when properly labeled training data set is not available. A number of zero-shot algorithms have been proposed and experimented with. However, none of them seems to be the "overall winner". In situations like this, it may be possible to develop a meta-classifier that would combine "best aspects" of individual classifiers and outperform all of them. In this context, the goal of this contribution is twofold. First, multiple state-of-the-art zero-shot learning methods are compared for standard benchmark datasets. Second, multiple meta-classifiers are suggested and experimentally compared (for the same datasets).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro