Practical Repetition-Aware Grammar Compression

10/29/2019
by   Isamu Furuya, et al.
0

The goal of grammar compression is to construct a small sized context free grammar which uniquely generates the input text data. Among grammar compression methods, RePair is known for its good practical compression performance. MR-RePair was recently proposed as an improvement to RePair for constructing small-sized context free grammar for repetitive text data. However, a compact encoding scheme has not been discussed for MR-RePair. We propose a practical encoding method for MR-RePair and show its effectiveness through comparative experiments. Moreover, we extend MR-RePair to run-length context free grammar and design a novel variant for it called RL-MR-RePair. We experimentally demonstrate that a compression scheme consisting of RL-MR-RePair and the proposed encoding method show good performance on real repetitive datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro