DeepAI AI Chat
Log In Sign Up

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

by   Feng Xu, et al.
Beijing University of Posts and Telecommunications
NetEase, Inc

Objectives: To develop and validate a deep learning (DL)-based primary tumor biopsy signature for predicting axillary lymph node (ALN) metastasis preoperatively in early breast cancer (EBC) patients with clinically negative ALN. Methods: A total of 1,058 EBC patients with pathologically confirmed ALN status were enrolled from May 2010 to August 2020. A DL core-needle biopsy (DL-CNB) model was built on the attention-based multiple instance-learning (AMIL) framework to predict ALN status utilizing the DL features, which were extracted from the cancer areas of digitized whole-slide images (WSIs) of breast CNB specimens annotated by two pathologists. Accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curves, and areas under the ROC curve (AUCs) were analyzed to evaluate our model. Results: The best-performing DL-CNB model with VGG16_BN as the feature extractor achieved an AUC of 0.816 (95 in predicting positive ALN metastasis in the independent test cohort. Furthermore, our model incorporating the clinical data, which was called DL-CNB+C, yielded the best accuracy of 0.831 (95 for patients younger than 50 years (AUC: 0.918, 95 interpretation of DL-CNB model showed that the top signatures most predictive of ALN metastasis were characterized by the nucleus features including density (p = 0.015), circumference (p = 0.009), circularity (p = 0.010), and orientation (p = 0.012). Conclusion: Our study provides a novel DL-based biomarker on primary tumor CNB slides to predict the metastatic status of ALN preoperatively for patients with EBC. The codes and dataset are available at


page 4

page 8


SlideGraph+: Whole Slide Image Level Graphs to Predict HER2Status in Breast Cancer

Human epidermal growth factor receptor 2 (HER2) is an important prognost...

A new methodology to predict the oncotype scores based on clinico-pathological data with similar tumor profiles

Introduction: The Oncotype DX (ODX) test is a commercially available mol...

Deep Angular Embedding and Feature Correlation Attention for Breast MRI Cancer Analysis

Accurate and automatic analysis of breast MRI plays an important role in...

Regression-based Deep-Learning predicts molecular biomarkers from pathology slides

Deep Learning (DL) can predict biomarkers from cancer histopathology. Se...