Predictive Patentomics: Forecasting Innovation Success and Valuation with ChatGPT

06/22/2023
by   Stephen Yang, et al.
0

Analysis of innovation has been fundamentally limited by conventional approaches to broad, structural variables. This paper pushes the boundaries, taking an LLM approach to patent analysis with the groundbreaking ChatGPT technology. OpenAI's state-of-the-art textual embedding accesses complex information about the quality and impact of each invention to power deep learning predictive models. The nuanced embedding drives a 24 improvement in R-squared predicting patent value and clearly isolates the worst and best applications. These models enable a revision of the contemporary Kogan, Papanikolaou, Seru, and Stoffman (2017) valuation of patents by a median deviation of 1.5 times, accounting for potential institutional predictions. Furthermore, the market fails to incorporate timely information about applications; a long-short portfolio based on predicted acceptance rates achieves significant abnormal returns of 3.3 opportunity to revolutionize startup and small-firm corporate policy vis-a-vis patenting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset