Preserving the Hypernym Tree of WordNet in Dense Embeddings

04/22/2020
by   Canlin Zhang, et al.
0

In this paper, we provide a novel way to generate low-dimension (dense) vector embeddings for the noun and verb synsets in WordNet, so that the hypernym-hyponym tree structure is preserved in the embeddings. We call this embedding the sense spectrum (and sense spectra for embeddings). In order to create suitable labels for the training of sense spectra, we designed a new similarity measurement for noun and verb synsets in WordNet. We call this similarity measurement the hypernym intersection similarity (HIS), since it compares the common and unique hypernyms between two synsets. Our experiments show that on the noun and verb pairs of the SimLex-999 dataset, HIS outperforms the three similarity measurements in WordNet. Moreover, to the best of our knowledge, the sense spectra is the first dense embedding system that can explicitly and completely measure the hypernym-hyponym relationship in WordNet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset