Price-based Resource Allocation for Edge Computing: A Market Equilibrium Approach
The emerging edge computing paradigm promises to deliver superior user experience and enable a wide range of Internet of Things (IoT) applications. In this work, we propose a new market-based framework for efficiently allocating resources of heterogeneous capacity-limited edge nodes (EN) to multiple competing services at the network edge. By properly pricing the geographically distributed ENs, the proposed framework generates a market equilibrium (ME) solution that not only maximizes the edge computing resource utilization but also allocates optimal (i.e., utility-maximizing) resource bundles to the services given their budget constraints. When the utility of a service is defined as the maximum revenue that the service can achieve from its resource allotment, the equilibrium can be computed centrally by solving the Eisenberg-Gale (EG) convex program. drawn from the economics literature. We further show that the equilibrium allocation is Pareto-optimal and satisfies desired fairness properties including sharing incentive, proportionality, and envy-freeness. Also, two distributed algorithms are introduced, which efficiently converge to an ME. When each service aims to maximize its net profit (i.e., revenue minus cost) instead of the revenue, we derive a novel convex optimization problem and rigorously prove that its solution is exactly an ME. Extensive numerical results are presented to validate the effectiveness of the proposed techniques.
READ FULL TEXT