Probabilistic Evaluation of Candidates and Symptom Clustering for Multidisorder Diagnosis

03/27/2013
by   Thomas D. Wu, et al.
0

This paper derives a formula for computing the conditional probability of a set of candidates, where a candidate is a set of disorders that explain a given set of positive findings. Such candidate sets are produced by a recent method for multidisorder diagnosis called symptom clustering. A symptom clustering represents a set of candidates compactly as a cartesian product of differential diagnoses. By evaluating the probability of a candidate set, then, a large set of candidates can be validated or pruned simultaneously. The probability of a candidate set is then specialized to obtain the probability of a single candidate. Unlike earlier results, the equation derived here allows the specification of positive, negative, and unknown symptoms and does not make assumptions about disorders not in the candidate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro