Progressive Denoising Model for Fine-Grained Text-to-Image Generation
Recently, vector quantized autoregressive (VQ-AR) models have shown remarkable results in text-to-image synthesis by equally predicting discrete image tokens from the top left to bottom right in the latent space. Although the simple generative process surprisingly works well, is this the best way to generate the image? For instance, human creation is more inclined to the outline-to-fine of an image, while VQ-AR models themselves do not consider any relative importance of each component. In this paper, we present a progressive denoising model for high-fidelity text-to-image image generation. The proposed method takes effect by creating new image tokens from coarse to fine based on the existing context in a parallel manner and this procedure is recursively applied until an image sequence is completed. The resulting coarse-to-fine hierarchy makes the image generation process intuitive and interpretable. Extensive experiments demonstrate that the progressive model produces significantly better results when compared with the previous VQ-AR method in FID score across a wide variety of categories and aspects. Moreover, the text-to-image generation time of traditional AR increases linearly with the output image resolution and hence is quite time-consuming even for normal-size images. In contrast, our approach allows achieving a better trade-off between generation quality and speed.
READ FULL TEXT