PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds

12/02/2020
by   Yi Wei, et al.
6

In this paper, we propose Point-Voxel Recurrent All-Pairs Field Transforms (PV-RAFT) to estimate scene flow from point clouds. All-pairs correlations play important roles in scene flow estimation task. However, since point clouds are irregular and unordered, it is challenging to efficiently extract features from all-pairs fields in 3D space. To tackle this problem, we present point-voxel correlation fields, which captures both local and long-range dependencies of point pairs. To capture point-based correlations, we adopt K-Nearest Neighbors search that preserves fine-grained information in the local region. By voxelizing point clouds in a multi-scale manner, a pyramid correlation voxels are constructed to model long-range correspondences. Integrating two types of correlations, our PV-RAFT makes use of all-pairs relations to handle both small and large displacements. We evaluate the proposed method on both synthetic dataset FlyingThings3D and real scenes dataset KITTI. Experimental results show that PV-RAFT surpasses state-of-the-art methods by remarkable margins.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro