Q-NET: A Formula for Numerical Integration of a Shallow Feed-forward Neural Network

06/25/2020
by   Kartic Subr, et al.
0

Numerical integration is a computational procedure that is widely encountered across disciplines when reasoning about data. We derive a formula in closed form to calculate the multidimensional integral of functions fw that are representable using a shallow feed-forward neural network with weights w and a sigmoid activation function. We demonstrate its applicability in estimating numerical integration of arbitrary functions f over hyper-rectangular domains in the absence of a prior. To achieve this, we first train the network to learn fw ≈ f using point-samples of the integrand. We then use our formula to calculate the exact integral of the learned function fw. Our formula operates on the weights w of the trained approximator network. We show that this formula can itself be expressed as a shallow feed-forward network, which we call a Q-NET, with w as its inputs. Although the Q-NET does not have any learnable parameters, we use this abstraction to derive a family of elegant parametric formulae that represent the marginal distributions of the input function over arbitrary subsets of input dimensions in functional form. We perform empirical evaluations of Q-NETs for integrating smooth functions as well as functions with discontinuities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro